A SOLUTION OF THE TARRY-ESCOTT PROBLEM OF DEGREE r.

By HANSRAJ GUPTA, Goet. College, Hoshiarpur.

(Communicated by Prof. Ram Behari, F.N.I.)

(Received September 9; read October 1, 1948.)

1. The Tarry-Escott problem of degree exactly r and order q, is that of finding q sets $A_1, A_2, A_3, \ldots, A_q$ of s integers each, such that

$$\sigma_k(A_i) = \sigma_k(A_j) \text{ when } 1 \leq k \leq r; \ 1 \leq i, j \leq q; \quad \ldots \quad (1)$$

while

$$\sigma_{r+1}(A_i) \neq \sigma_{r+1}(A_j) \text{ unless } i = j; \quad \ldots \quad (2)$$

where $\sigma_k(A_m)$ denotes the sum of the kth powers of the members of A_m.

When sets A satisfy the conditions set down above, we write

$$[A_1 = A_2 = A_3 = \ldots = A_q]_r. \quad \ldots \quad (3)$$

The least value of s for which such sets exist is denoted by $M_q(r)$. Gleden1 has shown that when $r = 1, 2, 3$ or 5,

$$M_q(r) = r+1 \text{ for all } q. \quad \ldots \quad (4)$$

Prouhet2 in 1861, anticipating Lehmer3, showed how q^{r+1} integers in Arithmetical Progression, could be divided into q sets of q^r members each so as to satisfy conditions (1) and (2).

In this note, I show that

$$M_q(r+1) \leq qM_q(r). \quad \ldots \quad (5)$$

In view of (4), we then get

$$M_q(4) \leq 4q, \text{ and } \ldots \quad (6)$$

$$M_q(r) \leq 6q^{r-5}, r > 5. \quad \ldots \quad (7)$$

These results are, of course, far from ideal4.

2. The set of integers obtained by adding a fixed integer t to each of the members of a set A shall be denoted by $A + t$. If A be a set of s integers and B a set of j integers, then $A + B$ shall denote the set of sj integers obtained by adding each member of set A to each member of set B.

Finally, if a set L consists of all the members contained in sets A, B, C and D, say, then we write

$$L = A, B, C, D. \quad \ldots \quad (8)$$

Throughout this note, small letters denote integers and capital letters denote sets, unless otherwise stated.

3. It is easily shown that (3) implies

$$[A_1 + t = A_2 + t = A_3 + t = \ldots = A_q + t]_r; \quad \ldots \quad (9)$$

and

$$[A_1 + B = A_2 + B = A_3 + B = \ldots = A_q + B]_r. \quad \ldots \quad (10)$$

VOL. XV—No. 2.
We proceed to show that it also implies
\[[C_1 = C_2 = C_3 = \ldots = C_s]_{r+1} \ldots \ldots \quad (11) \]
where
\[C_m = \mu_1 + t_{u_1}, \mu_2 + t_{u_2+1}, \mu_3 + t_{u_3+2}, \ldots, \mu_q + t_{u_q+2} - 1; \]
\[t_u = u - q, \quad u > q; \]
and the \(t \)'s are not all equal.

Proof of (11).

Let \(A_m \) denote the set of integers
\[\{a_1, a_2, a_3, \ldots, a_m\}; \]
and \(T \) the set of integers
\[t_1, t_2, t_3, \ldots, t_q. \]

Then, we have
\[
\sigma_k(\mu_j + t) = \sum_{i=1}^{s} (a_i, i + t)^k.
\]

\[
= \sigma_k(\mu_j) + \binom{k}{1} t \sigma_{k-1}(\mu_j) + \binom{k}{2} t^2 \sigma_{k-2}(\mu_j) + \ldots + \binom{k}{k} t^k \sigma_0(\mu_j),
\]
Hence
\[
\sigma_k(C_m) = \sigma_k(\mu_1 + t_{u_1}) + \sigma_k(\mu_2 + t_{u_2+1}) + \ldots + \sigma_k(\mu_q + t_{u_q+2} - 1)
\]
\[
= \sum_{j=1}^{q} \left\{ \sigma_k(\mu_j) + \binom{k}{1} t_{u_j} \sigma_{k-1}(\mu_j) + \ldots + \binom{k}{k} t_{u_j}^k \sigma_0(\mu_j) \right\}.
\]

For \(1 \leq k \leq r+1 \),
\[
\sigma_k(C_m) = \sigma_k(A_1, A_2, A_3, \ldots, A_q) + \binom{k}{1} \sigma_1(T) \sigma_{k-1}(A_q)
\]
\[
+ \binom{k}{2} \sigma_2(T) \sigma_{k-2}(A_q) + \ldots + \binom{k}{k} s \sigma_k(T),
\]
because
\[\sigma_i(\mu_j) = \sigma_i(A_q), \quad 1 \leq i \leq r. \]
Therefore \(\sigma_k(C_m) \) is independent of \(m \) when \(1 \leq k \leq r+1 \).

When, however, \(k = r+2 \),
\[
\sigma_{r+2}(C_m) = \sigma_{r+2}(A_1, A_2, \ldots, A_q) + \binom{r+2}{1} \sum_{j=1}^{q} t_{u_j+2} \sigma_{r+1}(A_j)
\]
\[
+ \binom{r+2}{2} \sigma_2(T) \sigma_{r+1}(A_q) + \binom{r+2}{3} \sigma_3(T) \sigma_{r-1}(A_q)
\]
\[
+ \ldots + \binom{r+2}{r+2} s \sigma_{r+2}(T),
\]
since
\[\sigma_{r+2}(A_i) \neq \sigma_{r+1}(A_j), \quad i \neq j. \]
Hence \(\sigma_{r+2}(C_m) \) is not independent of \(m \) unless all \(t \)'s are equal.
This proves the result.
From (4) it now follows that solutions of (3) exist for all \(r \).
Moreover,
\[
M_q(r+1) < q M_q(r),
\]
because each of the sets \(C \) has no more than the total number of members in sets \(A \). We say ‘no more than’ because some of the members may be common to all the sets \(C \) and can be cancelled out. Also, it is well known that
\[
M_q(r) \leq r + 1. \quad \ldots \quad \ldots \quad \ldots \quad (12)
\]

References.

4. For \(q = 2 \), Wright has shown that
\[
M_q(r) = O(r^4).
\]

I believe that \(M_q(r) \) is independent of \(q \).

If \(\mu_q(r) \) be the least integer among the partitions of which into exactly \(M_q(r) \) non-zero summands, there are \(q \) which considered as sets \(A_1, A_2, A_3, \ldots, A_q \) satisfy conditions (1) and (2), then \(\mu_q(r) \) would be a function of both \(q \) and \(r \).

Thus, \(\mu_q(1) = 2q \).

Also \(\mu_q(2) = 9 \) and \(\mu_q(3) = 18 \).